
© 2019 Delphix. All Rights Reserved. Private and Confidential.© 2019 Delphix. All Rights Reserved. Private and Confidential.

<Presenter> | January 22, 2020

Delphix 6.0

© 2019 Delphix. All Rights Reserved. Private and Confidential.

Delphix Dynamic Data Platform: 6.0 New Features - High Level

2

Google Cloud Support

© 2019 Delphix. All Rights Reserved. Private and Confidential.

Delphix Dynamic Data Platform: 6.0 New Features - Technical

3

Masking NFS/CIFS Mount

Enhanced Elastic Networking Adapter (ENA) Support

Masking API Updates

Improved Upgrade Experience

© 2019 Delphix. All Rights Reserved. Private and Confidential.

Google Cloud Support

• With Delphix 6.0, we support Delphix running in GCP for existing
supported masking and virtualization databases.

• Supported instances: n1-standard-32, n-standard-64, n1-standard-96,
n1-highmem-32, n1-highmem-64, and n1-highmem-96

© 2019 Delphix. All Rights Reserved. Private and Confidential.

• Enable direct mount and mask a file system over NFS and CIFS
• Simplifies the process of file masking versus old way via FTP/SFTP

Masking NFS/CIFS Mount

© 2019 Delphix. All Rights Reserved. Private and Confidential.

• Support networking on AWS instances with the Elastic Network
Adapter (ENA)

• Key benefits of enhanced networking include:
– Higher bandwidth
– Higher packet per second (PPS) performance
– Lower inter-instance latencies

Enhanced Elastic Networking Adapter (ENA) Support

© 2019 Delphix. All Rights Reserved. Private and Confidential.

• 6.0 introduces a variety of updates for existing endpoints:
– Delete an application by ID
– Endpoints moved from incubating to stable state

– Use masking API client to retrieve endpoint list

– Adds versioning for the masking API: Specify a version of the API to access historical
functionality

Masking API Updates

© 2019 Delphix. All Rights Reserved. Private and Confidential.

Small changes to version details
• “OS Version” will always be the same as version
• “Minimum OS Version” is the lowest running version

that supports deferred upgrade.
• Verification package version is the version of

verification checks bundled with this upgrade image

Improved Upgrade Experience: User Experience

Deferred upgrade a UI option
• Default to deferred upgrade
• The other option is FULL upgrade
• Deferred upgrade will have zero VDB downtime.

© 2019 Delphix. All Rights Reserved. Private and Confidential.

Refactor upgrade verification to
conform to UX standards
• List Upgrade Checks in table structure similar to

Faults and Alerts
• Reset of status is no longer supported from Web but

is available from CLI
• Informational checks no longer have to be

acknowledged

Display new information about
verification processing
• List the full set of actions performed, and

their duration

Improved Upgrade Experience: User Experience

© 2019 Delphix. All Rights Reserved. Private and Confidential.

• Deferred Upgrade
– If version is greater than “Minimum OS Version” then it is possible to do a Deferred upgrade
– Requires no VDB downtime

• Full
– If version is less than“Minimum OS Version” then a Full upgrade is the only option available
– Requires VDB downtime

• Finish Deferred
– After one or more Deferred upgrades, this upgrade type will appear on the latest running

Deferred version

Improved Upgrade Experience: Multiple Upgrade Types

© 2019 Delphix. All Rights Reserved. Private and Confidential.

• New upgrade checks have been implemented
– MDS/ZFS consistency check
– Domain0 > 90% storage check

• Stack startup verification
– Runs after MDS migration and upgrade checks
– Brings up MGMGMT service in a read-only mode, to verify that all stack initialization

completes successfully

• Masking flyway migrations
– Masking migrations are now performed alongside virtualization migrations, so masking

flyway migration issues will be detected

Improved Upgrade Experience: Verification Checks

© 2019 Delphix. All Rights Reserved. Private and Confidential.

• Verification in Container
– Verification is now run in an “nspawn” container

• In-Place verification
– When the upgrade will NOT require a reboot, then we can upgrade “In-Place”
– Will upgrade on top of the existing root file system
– Take a snapshot of the root file system, and do the upgrade verification in a container that

uses running root file system.

• Fresh (not-in-place) verification
– When the upgrade will require a reboot, then we create a brand new root file system
– The verification container will use the new file system as its root

Improved Upgrade Experience: Verification Changes

