
W H I T E P A P E R

449

Ingesting
Oracle Backups
into Delphix

Current Ingestion Process
Ingesting data into Delphix for the purpose of provisioning dev

and test instances first needs the creation of a data source in

Delphix, called a “linked source” or “dSource” for short. The idea

here is that a dSource is linked to a physical database whose

data would be ingested into Delphix. The process of ingesting

data into Delphix is initiated via the “SnapSync” workflow. When

a SnapSync is initia ted, Delphix communicates with the database

host and executes a backup of the database. This backup stream

is the source of the data on Delphix for a given Oracle database.

Subsequent SnapSync jobs capture changes that have happened

since the last SnapSync. Delphix can also fetch archived logs as

they are generated, allowing for point in time provisioning of a

virtual database or V2P operation.

The current approach has several requirements which can make

it unsuitable for some environments:

1. To be able to initiate a backup and fetch archived logs from

the source environment, the Delphix Engine requires OS level

connectivity and reasonably high levels of database privileges.

In many cases this can pose security concerns.

2. In most cases, production databases will have existing backup

procedures in place. The overhead of performing specific

backups for the Delphix engine, and transferring the backups

and archived logs to the engine can be a duplication of effort

and poor use of resources.

To help customers use their existing backups (either RMAN or

3rd party based), Delphix, starting from 7.0.0.0, introduced the

“Staging Push” feature.

002 Ingesting Oracle Backups into Delphix

Linking and ingesting data from Oracle databases, be it production or

standby databases, traditionally involved Delphix taking a backup on

the host where the database resides and using this backup as a way

to create the initial copy of the database data on Delphix appliance.

Subsequent changes in these production databases are captured with

a combination of incremental backups and transaction logs (archived

logs). With the introduction of the “Staging Push” feature, starting with

the 7.0.0.0 release of the Delphix appliance, users can ingest their

backups into Delphix without the need for Delphix initiated backups or

even Delphix access to the source Database.

Staging Push
Staging Push introduces the concept of a staging instance for Oracle dSource ingestion. Storage for the

staging instance is provided by the Delphix Engine via NFS, Existing backups are then used to restore the

source database onto the Delphix provided storage, at which point a dSource SnapSync can be initiated.

Staging Push enhances the data ingestion mechanism by providing the following:

 » Any backup vendor and backup location can be used to restore the backups.

 » The staging database can also be synchronized with the source database using various database

replication tools. Delphix has validated Data Guard and Active Data Guard for this process.

 » No access to the production environment or database is required at any point by Delphix, providing

true “zero production touch” capability.

 » Unlike with the Delphix OBI plugin, Staging Push snapshots are provisioned in the exact same manner

as regular Oracle snapshots, providing feature parity with traditional Oracle dSources.

Data Ingestion with Staging Push
Once a Staging Push dSource is created, a running Oracle instance will be available on the Oracle staging

host for ingesting production data. Before initiating Snapsync for this dSource, the staging instance can be

populated with production data in the following ways:

1. Restore existing database backups on the staging database. A pre-sync hook can be used to automate

the restore process.

2. Setup the staging database as a physical standby database. A pre-sync and a post-sync hook can be

used to stop/start managed recovery.

The staging database needs to be active only during dSource SnapSync operation. It can be shutdown

after the snapshot to conserve system resources on the Oracle staging host. pre-sync and post-sync hooks

can start/stop the staging database before/after taking snapshots.

A staging push dSource can be setup using following steps:

1. Create a dSource from UI, CLI or API.

2. Configure pre-sync and post sync hooks as per the decided ingestion strategy or set up external scripts

to populate the staging database.

3. Take dSource snapshot manually or by configuring a SnapSync policy.

003Ingesting Oracle Backups into Delphix

Link/Sync a dSource
Following are the steps to link and sync a multitenant database but similar operations can be performed

for a non-multitenant database as well by selecting appropriate parameters in the Link dSource wizard.

1. Link a CDB dSource. Refer the Delphix documentation here to link the dSource.

2. Link a PDB dSource.

3. On the Oracle staging host, Delphix storage will be mounted for both CDB and PDB under the

specified mount directory.

4. Populate the staging database with the latest data from the source database.

Note: The datafiles in the staging database need to be placed in following directories:

 » For Non Multi Tenant databases: MOUNT_BASE/<Database_Unique_Name>/datafile

 » For CDBs and PDB$SEED: MOUNT_BASE/<CDB_Unique_Name>/datafile

 » For PDBs: MOUNT_BASE/<PDB_Name>-<CDB_Unique_Name>/datafile

5. The archive logs can be placed in the mounted ‘archive’ directory to enable point in time provisioning

from the dSource snapshots.

Note: The archive log files must be placed in following directories:

 » For Non Multi Tenant databases: MOUNT_BASE/<Database_Unique_Name>/datafile

 » For Non Multi Tenant databases: MOUNT_BASE/<Database_Unique_Name>/archive

 » For CDBs: MOUNT_BASE/<CDB_Unique_Name>/archive

All the logs should be in the ‘archive’ directory only. Logs placed in subdirectories of the ‘archive’

directory are not supported as of writing this whitepaper.

6. Take a snapshot of the dSource. Refer to the Delphix documentation here to take the snapshot.

Configure Hooks
Refer the Delphix documentation here to configure hooks. Hooks can be configured either while creating

the dSource or even after the dSource is created.

Data Ingestion from Database Backups
The Staging database can be updated with latest data from the backups of the source database by

configuring the restore process as a presync hook.

Sample hook scripts to restore full and incremental backups are given below using the environment

variables available in the hooks. Both the scripts can be configured as a pre-sync hook. The scripts should

be modified as per the requirements before use.

004 Ingesting Oracle Backups into Delphix

https://cd.delphix.com/docs/latest/linking-an-oracle-multi-tenant-staging-push-dsourc
https://cd.delphix.com/docs/latest/working-with-oracle-snapshots
https://cd.delphix.com/docs/latest/hook-scripts-for-automation-and-customization
https://cd.delphix.com/docs/latest/oracle-hook-operations
https://cd.delphix.com/docs/latest/oracle-hook-operations

005Ingesting Oracle Backups into Delphix

Non Multi Tenant Database

Full (Level 0) Restore

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.

Input Section
BACKUP_LOCATION=<backup-location>
CF_AUTOBACKUP_LOCATION=$BACKUP_LOCATION/%F
DB_ID=<db-id>
LOG_FILE=<hook-log-file-location>

Declarations
DB_NAME=$DELPHIX_DATABASE_NAME
DB_MOUNT_PATH=${DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/datafile

export ORACLE_SID=${ORACLE_SID}
export SQLPLUS_DML_MODIFIERS=’set heading off pagesize 0 echo off define off feedback
off verify off trimout on timing off;’

Exit if it is an incremental restore
[-n “$(ls -A --ignore “*.ora” $DB_MOUNT_PATH)”] && exit 0

Restore the control file
rman target / <<-EOF >> $LOG_FILE
 run {
 set dbid $DB_ID;

 # Set autobackup format if the backup is at non-default location
 set controlfile autobackup format for device type disk to ‘$CF_
 AUTOBACKUP_LOCATION’;

 restore CONTROLFILE from autobackup;
 }
 exit;
EOF

Mount the database
sqlplus “/ as sysdba” <<-EOF >> $LOG_FILE
 alter database mount;
 exit;
EOF

rman target “/” <<-EOF >> $LOG_FILE
 run {

006 Ingesting Oracle Backups into Delphix

 set newname for database to new;

	 #	Catalog	backup	files
 catalog start with ‘$BACKUP_LOCATION’ noprompt;

 # Restore database
 restore database;

 switch datafile all;
 }
 exit;
EOF

Find the recovery SCN
RECOVERY_SCN=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 SELECT nvl(MIN(latest_change), 0)
 FROM (
 SELECT max(next_change#) latest_change
 FROM v\\$backup_redolog brd, v\\$database db, v\\$backup_piece pc
 WHERE brd.resetlogs_change# = db.resetlogs_change#
 AND brd.resetlogs_time = db.resetlogs_time
 AND brd.set_stamp = pc.set_stamp
 AND brd.set_count = pc.set_count
 AND decode(media, null, ‘DISK’, ‘TAPE’) = ‘DISK’ GROUP BY thread#
);
 exit;
EOF`

rman target “/” <<-EOF >> $LOG_FILE
 # Recover database
 run {
 set until scn $RECOVERY_SCN;
 recover database;
 }
 exit;
EOF

Incremental (Level-1) Restore

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.

Input Section
BACKUP_LOCATION=<backup-location>
CF_AUTOBACKUP_LOCATION=$BACKUP_LOCATION/%F

007Ingesting Oracle Backups into Delphix

DB_ID=<db-id>
LOG_FILE=<hook-log-file-location>

Declarations
DB_NAME=$DELPHIX_DATABASE_NAME
DB_MOUNT_PATH=${DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/datafile

export ORACLE_SID=${ORACLE_SID}
export SQLPLUS_DML_MODIFIERS=’set heading off pagesize 0 echo off define off
feedback off verify off trimout on timing off;’

Exit if not an incremental restore
[-z “$(ls -A --ignore “*.ora” $DB_MOUNT_PATH)”] && exit 0

Restart the database in NOMOUNT mode
sqlplus “/ as sysdba” <<-EOF >> $LOG_FILE
 startup force nomount;
 exit;
EOF

#	Restore	the	control	file
rman target / <<-EOF >> $LOG_FILE
 run {
 set dbid $DB_ID;

 # Set autobackup format if the backup is at non-default location
 set controlfile autobackup format for device type disk to
 ‘$CF_AUTOBACKUP_LOCATION’;

 restore controlfile from autobackup;
 }
 exit;
EOF

Mount the database
sqlplus “/ as sysdba” <<-EOF >> $LOG_FILE
 alter database mount;
 exit;
EOF

rman target “/” <<-EOF >> $LOG_FILE
	 #	Catalog	existing	database	files
 CATALOG START WITH ‘$DB_MOUNT_PATH’ noprompt;

	 #	Switch	datafiles	to	copy
 switch database to copy;

	 #	Catalog	backup	files
 catalog start with ‘$BACKUP_LOCATION’ noprompt;

 exit;
EOF

008 Ingesting Oracle Backups into Delphix

Find the recovery SCN
RECOVERY_SCN=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 SELECT nvl(MIN(latest_change), 0)
 FROM (
 SELECT max(next_change#) latest_change
 FROM v\\$backup_redolog brd, v\\$database db, v\\$backup_piece pc
 WHERE brd.resetlogs_change# = db.resetlogs_change#
 AND brd.resetlogs_time = db.resetlogs_time
 AND brd.set_stamp = pc.set_stamp
 AND brd.set_count = pc.set_count
 AND decode(media, null, ‘DISK’, ‘TAPE’) = ‘DISK’ GROUP BY thread#
);
 exit;
EOF`

rman target “/” <<-EOF >> $LOG_FILE
 # Recover database

 run {
 set until scn $RECOVERY_SCN;
 recover database;
 }
 exit;
EOF

Multi-Tenant Database

Full (Level 0) Restore

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.

Input Section
BACKUP_LOCATION=<backup-location>
CF_AUTOBACKUP_LOCATION=$BACKUP_LOCATION/%F
DB_ID=<db-id>
BYSTANDER_PDB_CON_IDS=<con_ids of bystander PDBS, separated by comma, e.g. 4,5>
LOG_FILE=<hook-log-file-location>

Declarations
PDB_MOUNT_PATH=${DELPHIX_MOUNT_PATH}/${DELPHIX_PDB_NAME}-${DELPHIX_DATABASE_UNIQUE_
NAME}/datafile
CDB_MOUNT_PATH=${DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/datafile

009Ingesting Oracle Backups into Delphix

Exit if it is an incremental restore
[-n “$(ls -A $PDB_MOUNT_PATH)”] && exit 0

export ORACLE_SID=${ORACLE_SID}
export SQLPLUS_DML_MODIFIERS=’set heading off pagesize 0 echo off define off feedback
off verify off trimout on timing off;’

#	Restore	the	control	file
rman target / <<-EOF >> $LOG_FILE
 run {
 set dbid $DB_ID;

 # Set autobackup format if the backup is at non-default location
 set controlfile autobackup format for device type disk to
 ‘$CF_AUTOBACKUP_LOCATION’;

 restore CONTROLFILE from autobackup;

 }
 exit;
EOF

Mount the database
sqlplus “/ as sysdba” <<-EOF >> $LOG_FILE
 alter database mount;
 exit;
EOF

Restore database
rman target “/” <<-EOF >> $LOG_FILE
 run {
	 #	Catalog	backup	files
 CATALOG START WITH ‘$BACKUP_LOCATION’ NOPROMPT;

 set newname for database to new;

 alter system set DB_CREATE_FILE_DEST=’$CDB_MOUNT_PATH’;

 # Restore CDB$ROOT
 restore force device type disk database root;

 # Restore PDB$SEED
 restore force device type disk pluggable database “pdb\$seed”;

 # Restore PDB. Restore only that PDB for which the dSource is created.
 alter system set DB_CREATE_FILE_DEST=’$PDB_MOUNT_PATH’;

 restore force device type disk PLUGGABLE DATABASE ${DELPHIX_PDB_NAME};
 switch datafile all;
 }
 exit;
EOF

0010 Ingesting Oracle Backups into Delphix

Find the recovery SCN
RECOVERY_SCN=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 SELECT nvl(MIN(latest_change), 0)
 FROM (
 SELECT max(next_change#) latest_change
 FROM v\\$backup_redolog brd, v\\$database db, v\\$backup_piece pc
 WHERE brd.resetlogs_change# = db.resetlogs_change#
 AND brd.resetlogs_time = db.resetlogs_time
 AND brd.set_stamp = pc.set_stamp
 AND brd.set_count = pc.set_count
 AND decode(media, null, ‘DISK’, ‘TAPE’) = ‘DISK’ GROUP BY thread#
);
 exit;
EOF`
Get a list of all the tablespaces of bystander PDBs to skip them during recovery
This generates a string like “CDOMLOSR1E0FPDB2:SYSTEM,CDOMLOSR1E0FPDB2:SYSAUX”
BYSTANDER_PDB_TS=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 set linesize 4096 wrap on recsep off tab off
 set serveroutput on
 DECLARE
 v_ts varchar(5000);
 BEGIN
 FOR pdb_ts IN (SELECT p.name || ‘:’ || ts.name pdb_ts_name FROM
 v\\$tablespace ts, v\\$pdbs p WHERE p.con_id = ts.con_id and p.con_id in
 ($BYSTANDER_PDB_CON_IDS))
 LOOP
 v_ts := v_ts || pdb_ts.pdb_ts_name || ‘,’;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE(TRIM(TRAILING ‘,’ FROM v_ts));
 END;
 /
 exit;
EOF`
Recover database
rman target “/” <<-EOF >> $LOG_FILE
 run {
 set until scn $RECOVERY_SCN;
 recover database skip forever tablespace $BYSTANDER_PDB_TS;
 }
 exit;
EOF

0011Ingesting Oracle Backups into Delphix

Incremental (Level 1) Restores

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.

Input Section
BACKUP_LOCATION=<backup-location>
CF_AUTOBACKUP_LOCATION=$BACKUP_LOCATION/%F
DB_ID=<db-id>
BYSTANDER_PDB_CON_IDS=<con_ids of bystander PDBS, separated by comma, e.g. 4,5>
LOG_FILE=<hook-log-file-location>

Declarations
PDB_MOUNT_PATH=${DELPHIX_MOUNT_PATH}/${DELPHIX_PDB_NAME}-${DELPHIX_DATABASE_UNIQUE_
NAME}/datafile
CDB_MOUNT_PATH=${DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/datafile

Exit if it is not an incremental restore
[-z “$(ls -A $PDB_MOUNT_PATH)”] && exit 0

export ORACLE_SID=${ORACLE_SID}
export SQLPLUS_DML_MODIFIERS=’set heading off pagesize 0 echo off define off feedback
off verify off trimout on timing off;’

Restart the database in NOMOUNT mode
sqlplus “/ as sysdba” <<-EOF >> $LOG_FILE
 startup force nomount;
 exit;
EOF

#	Restore	the	control	file
rman target / <<-EOF >> $LOG_FILE
 run {
 set dbid $DB_ID;

 # Set autobackup format if the backup is at non-default location
 set controlfile autobackup format for device type disk to ‘$CF_
AUTOBACKUP_LOCATION’;

 restore CONTROLFILE from autobackup;
 }
 exit;
EOF

Mount the database
sqlplus “/ as sysdba” <<-EOF >> $LOG_FILE
 alter database mount;
 exit;
EOF

0012 Ingesting Oracle Backups into Delphix

#	Switch	to	existing	datafiles
rman target “/” <<-EOF >> $LOG_FILE
	 #	Catalog	CDB	datafiles
 CATALOG START WITH ‘${DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}’
 NOPROMPT;

	 #	Catalog	PDB	datafiles
 CATALOG START WITH ‘${DELPHIX_MOUNT_PATH}/${DELPHIX_PDB_NAME}-${DELPHIX_
 DATABASE_UNIQUE_NAME}’ NOPROMPT;

	 #	Switch	to	existing	datafiles
 switch database root to copy;

 switch pluggable database ‘pdb\$seed’ to copy;

 switch pluggable database ${DELPHIX_PDB_NAME} to copy;

	 #	Catalog	backup	files
 CATALOG START WITH ‘$BACKUP_LOCATION’ NOPROMPT;

 exit;
EOF

Find the recovery SCN
RECOVERY_SCN=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 SELECT nvl(MIN(latest_change), 0)
 FROM (
 SELECT max(next_change#) latest_change
 FROM v\\$backup_redolog brd, v\\$database db, v\\$backup_piece pc
 WHERE brd.resetlogs_change# = db.resetlogs_change#
 AND brd.resetlogs_time = db.resetlogs_time
 AND brd.set_stamp = pc.set_stamp
 AND brd.set_count = pc.set_count
 AND decode(media, null, ‘DISK’, ‘TAPE’) = ‘DISK’ GROUP BY thread#
);
 exit;
EOF`

Get a list of all the tablespaces of bystander PDBs to skip them during recovery
This generates a string like “CDOMLOSR1E0FPDB2:SYSTEM,CDOMLOSR1E0FPDB2:SYSAUX”
BYSTANDER_PDB_TS=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 set linesize 4096 wrap on recsep off tab off
 set serveroutput on
 DECLARE
 v_ts varchar(5000);
 BEGIN
 FOR pdb_ts IN (SELECT p.name || ‘:’ || ts.name pdb_ts_name FROM
 v\\$tablespace ts, v\\$pdbs p WHERE p.con_id = ts.con_id and p.con_id in
 ($BYSTANDER_PDB_CON_IDS))

0013Ingesting Oracle Backups into Delphix

 LOOP
 v_ts := v_ts || pdb_ts.pdb_ts_name || ‘,’;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE(TRIM(TRAILING ‘,’ FROM v_ts));
 END;
 /
 exit;
EOF`

Recover database
rman target “/” <<-EOF >> $LOG_FILE
 run {
 set until scn $RECOVERY_SCN;
 recover database skip forever tablespace $BYSTANDER_PDB_TS;
 }
 exit;

EOF

Data Ingestion from Staging Database
Setup as Physical Standby

The staging database can be setup as a physical standby using the following steps:

1. Link a CDB dSource. Refer the Delphix documentation here to link the dSource.

 The dSource should be created with the following additional settings:

a. Select the “physical standby” option.

b. Set additional config params such as LOG_ARCHIVE_CONFIG on the Staging DB

 (needed for log apply between Primary and Standby)
 LOG_ARCHIVE_CONFIG=”’DG_CONFIG=(PRIMARY_DB_UNIQUE_NAME, STANDBY_
 DB_UNIQUE_NAME)’”

2. Link the PDB dSource.

3. Set up Staging Database as Standby under Oracle Data Guard Configuration.

 » Create a STANDBY control file for the Staging Database

• Create the STANDBY control file
ALTER DATABASE CREATE STANDBY CONTROLFILE AS

‘/path/to/standby.ctl’ REUSE;

• Replace the existing control file (which was restored from the backup) with the STANDBY control file
mv /path/to/standby.ctl /{DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/

datafile/control.ctl

• Restart the Staging Database

STARTUP FORCE MOUNT
pfile=’/{DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/datafile/init.
ora’;

https://cd.delphix.com/docs/latest/linking-an-oracle-multi-tenant-staging-push-dsourc

0014 Ingesting Oracle Backups into Delphix

 » Copy Primary DB’s password file to the Staging DB on the Staging host

scp -r $ORACLE_HOME/dbs/orapw<PRIMARY_DB_SID> oracle@<STAGING_HOST>:$ORACLE_HOME/
dbs/orapw<STANDBY_DB_SID>

 » Create Standby Redo Logs (SRL) groups on both PRIMARY and STANDBY

No. of SRL groups must be one more than the no. of online redo groups on Primary
and their size should be the same as that of the primary’s redo group size.

On Primary
ALTER DATABASE ADD STANDBY LOGFILE GROUP 4 SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 5 SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 6 SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 7 SIZE 50M;

On Standby
ALTER DATABASE ADD STANDBY LOGFILE GROUP 4 SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 5 SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 6 SIZE 50M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 7 SIZE 50M;

 » Start Managed Recovery Process (MRP) on STANDBY

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION USING
CURRENT LOGFILE;

 » Set Parameters on the PRIMARY once the STANDBY is mounted

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG=’DG_CONFIG=(PRIMARY_DB_UNIQUE_NAME, STANDBY_DB_

UNIQUE_NAME)’;

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2=’SERVICE=”(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
(HOST=<STANDBY_HOST>)(PORT=1521))(CONNECT_DATA=(SID=<STANDBY_DB_SID>)
(SERVER=DEDICATED)))” LGWR SYNC VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE) DB_UNIQUE_
NAME=<STANDBY_DB_UNIQUE_NAME>’ SCOPE=BOTH;

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=’ENABLE’ SCOPE=BOTH;

ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=’AUTO’ SCOPE=BOTH;

4. Take a snapshot of the dSource.

 Following scripts can be configured as pre-sync and post-sync hooks to start and stop the managed recovery

 process. The script should be modified as per the requirements before use.

 Pre-sync hook:

 # Statement of Support
 # This software is provided as-is, without warranty of any kind or commercial
support
 # through Delphix. See the associated license for additional details. Questions,
 # issues, feature requests, and contributions should be directed to the community as
 # outlined in the Delphix Community Guidelines.

0015Ingesting Oracle Backups into Delphix

 sqlplus “/ as sysdba” <<-EOF >> ~/pre-hook.log
 alter database recover managed standby database cancel;
 shutdown immediate;
 startup mount
 pfile=’/{DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/datafile/init.ora’
 ;
 exit;
EOF

Post-sync hook:

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.

sqlplus \”/ as sysdba\” <<-EOF >> ~/post-hook.log
 alter database open read only;
 alter database recover managed standby database disconnect from session using
 current logfile;
 exit;
EOF

Partial Ingestion with Staging Push
During the restore process, only selected tablespaces can be restored on the staging database. The restore and recovery

statements can be used as follows to skip selected tablespaces.

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.
run {
 restore database skip forever tablespace <tablespace-list>;
}

run {
 set until scn $RECOVERY_SCN;
 recover database skip forever tablespace <tablespace-list>;
}

0016 Ingesting Oracle Backups into Delphix

Logsync for Point-In-Time Provisioning
Archived logs restored on the mounted ‘archive’ directory on the staging host during the restore process enable point-in-

time provisioning from dSource snapshots.

The following pre-sync hook script can be used to automatically restore archive logs from the latest backup to the

mounted ‘archive’ directory:

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.

Input Section
BACKUP_LOCATION=<backup-location>
LOG_FILE=<hook-log-file-location>

Declarations
ARCHIVE_MOUNT_PATH=${DELPHIX_MOUNT_PATH}/${DELPHIX_DATABASE_UNIQUE_NAME}/archive

export ORACLE_SID=${ORACLE_SID}
export SQLPLUS_DML_MODIFIERS=’set heading off pagesize 0 echo off define off feedback
off verify off trimout on timing off;’

rman target / <<-EOF >> $LOG_FILE
run {
 # Uncatalog all the existing backups. ‘noprompt’ clause may not work in
 # Oracle version 12.1.0.1.
 change backup uncatalog noprompt;

 # Uncatalog all the existing archive log entries
 change archivelog all uncatalog;

 #	Catalog	backup	files
 catalog start with ‘$BACKUP_LOCATION’ noprompt;
}
exit;
EOF

Find the lowest sequence number to restore
MIN_SEQ=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 select min(sequence#)
 from v\\$backup_redolog vbr, v\\$backup_piece vbp, v\\$database_incarnation vdi
 where vbr.resetlogs_change# = vdi.resetlogs_change#

0017Ingesting Oracle Backups into Delphix

 and vbr.set_stamp = vbp.set_stamp
 and vdi.status = ‘CURRENT’
 and vbp.status = ‘A’;
 exit;
EOF`

Find the highest sequence number to restore
MAX_SEQ=`sqlplus -S -R 3 “/ as sysdba” <<-EOF
 $SQLPLUS_DML_MODIFIERS
 select max(sequence#)
 from v\\$backup_redolog vbr, v\\$backup_piece vbp, v\\$database_incarnation vdi
 where vbr.resetlogs_change# = vdi.resetlogs_change#
 and vbr.set_stamp = vbp.set_stamp
 and vdi.status = ‘CURRENT’
 and vbp.status = ‘A’;
 exit;
EOF`

Exit if the min or max seq values are not found
if [[-z $MIN_SEQ]]; then
 echo “No logs to restore” >> $LOG_FILE
 exit;
fi

if [[-z $MAX_SEQ]]; then
 echo “No logs to restore” >> $LOG_FILE
 exit;
fi

#	Set	the	archive	log	file	location
sqlplus “/ as sysdba” <<-EOF >> $LOG_FILE
 alter system set log_archive_dest_1=’location=$ARCHIVE_MOUNT_PATH MANDATORY’;
 exit;
EOF

#	Restore	the	archive	log	files	from	backup
rman target / <<-EOF >> $LOG_FILE
 run {
 restore force device type disk archivelog from logseq $MIN_SEQ until
 logseq $MAX_SEQ;
 }

 exit;
EOF

0018 Ingesting Oracle Backups into Delphix

Configure TDE for Staging Databases
Refer Oracle documentation to setup TDE for a staging database in different configurations. As an example,

following steps can be used to configure TDE for a staging database associated with a Staging Push dSource.

Please note that in case of multitenant databases, a Staging Push CDB cannot have both encrypted and

non-encrypted PDBs.

Statement of Support
This software is provided as-is, without warranty of any kind or commercial support
through Delphix. See the associated license for additional details. Questions,
issues, feature requests, and contributions should be directed to the community as
outlined in the Delphix Community Guidelines.

1. Link a non-multitenant/CDB dSource. Refer the Delphix documentation here to link the dSource. On successful

linking, a new staging Oracle instance will be created on the remote Oracle host.

2. In the staging Oracle installation, configure TDE keystore location in “sqlnet.ora”:

 ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=<staging keystore location>)))
 For Oracle 18+ versions, the keystore location can also be configured by setting the “wallet_root”

 system parameter:

 ALTER SYSTEM SET WALLET_ROOT=’<staging keystore location>)’ SCOPE=BOTH SID=’*’;
 ALTER SYSTEM SET TDE_CONFIGURATION=”KEYSTORE_CONFIGURATION=<keystore_type>”
 SCOPE=BOTH SID=’*’;

3. Create the keystore directory:

 mkdir -p <staging keystore location>

4. Create an empty keystore at the keystore location:

 SQL> administer key management create keystore ‘<staging keystore location>’
 identified by “<staging keystore password>”;
 keystore altered.

5. Copy the source database keystore to the host where staging Oracle instance resides. Merge the source keystore

into the newly created empty keystore for staging database.

 SQL> administer key management merge keystore ‘<source keystore location>’
 identified by “<source keystore password>” into existing keystore ‘<staging
 keystore location>’ identified by “<staging keystore password>” with backup;

 keystore altered.

Note that this step must be executed for every PDB coming from a different source CDB.

https://docs.oracle.com/en/database/oracle/oracle-database/19/asoag/configuring-transparent-data-encryption.html#GUID-C5D20EAE-3369-411F-9A7E-13AB14139F1D

0019Ingesting Oracle Backups into Delphix

6. Verify the status of the staging keystore:

 SQL> select * from v$encryption_wallet;

 WRL_TYPE WRL_PARAMETER STATUS

 FILE /u01/tde/CDOMLOSRE17C/ CLOSED

7. Open the staging keystore:

 SQL> administer key management set keystore open force keystore identified by
 “<staging keystore password>”;
 keystore altered.

8. Verify the status of the staging keystore:

 SQL> select * from v$encryption_wallet;

 WRL_TYPE WRL_PARAMETER STATUS

 FILE /u01/tde/CDOMLOSRE17C/ OPEN

After this setup, an encrypted source database backup can be restored and recovered on the staging instance before

taking a dSource snapshot. The staging database can also be setup as a physical standby database to automatically

receive incremental data from the source database.

For provisioning, standard Delphix procedures to provision a non-mutitenant database or a virtual pluggable database

with TDE can be used as is.

Conclusion
Staging push provides a flexible approach to ingestion and lets the user control how data is ingested into Delphix

with zero production touch. Staging Push dSources don’t need any access to the source database at any point during

the ingestion process. Also since the database is in consistent state while taking a snapshot, provisioning from these

snapshots is faster as no database recovery is needed during provisioning.

https://cd.delphix.com/docs/latest/provisioning-a-vdb-from-an-encrypted-oracle-databa
https://cd.delphix.com/docs/latest/provisioning-a-tde-enabled-vpdb

Ingesting
Oracle Backups
Into Delphix

Delphix is the industry leader for DevOps test data management.

Businesses need to transform application delivery but struggle to balance speed with data security and compliance. Our DevOps Data

Platform automates data security, while rapidly deploying test data to accelerate application releases. With Delphix, customers modernize

applications, adopt multicloud, achieve CI/CD, and recover from downtime events such as ransomware up to 2x faster.

Leading companies, including Choice Hotels, Banco Carrefour, and Fannie Mae, use Delphix to accelerate digital transformation and

enable zero trust data management. Visit us at www.delphix.com.

449

©2023, Delphix. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to

change without notice. This document and all scripts contained within and/or described therein are provided as-is without warranty of any

kind. Delphix and its licensors disclaim any and all warranties, express or implied, including, but not limited to, any implied warranties and

conditions of merchantability, fitness for a particular purpose and noninfringement. Delphix does not warrant that the scripts will meet your

requirements or that the use thereof will be bug-free, uninterrupted or error-free. Scripts contained within this document and/or described

therein are not regression tested and are not covered by Delphix Support Entitlements. Delphix does not warrant the quality, accuracy,

completeness, or reliability of any results obtained from your use of the scripts. Delphix and its licensors specifically disclaim any liability

with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may

not be reproduced or transmitted in any form or by any means, electronic, mechanical or otherwise, for any purpose, without our prior

written permission.

http://www.delphix.com

