

Provisioning vPDBs from a non-MT dSource

July 2020

Overview
Oracle 20c will only support the multitenant architecture. As a result, Oracle database customers
must begin developing and testing PDB conversions from non-multitenant production sources.
Delphix customers would like to use Delphix virtualized databases to test the upgrade and
conversion by using non-multitenant sources and creating virtual Oracle multitenant PDBs. This
document describes the steps to support this workflow.

Pre-requisites
1. 6.0.3.0 Delphix Engine with a new feature flag ORACLEMTCONVERT enabled.

Environment Requirements
1. Source host with a non-multitenant Oracle 11g or newer source database.
2. VDB target host for provisioning a virtual non-multitenant VDB from the source database.
3. CDB target host with a running Oracle target version CDB.

If testing a non-multitenant to multitenant conversion where an upgrade is also required (e.g.
source is 12.2 and target is 19c) then there are two options for upgrading the database:

Upgrade Option 1: After provisioning the VDB.
Upgrade Option 2: After plugging into the CDB target database.

Option 1 requires the ability to upgrade to the Oracle target version on the VDB target host.

How to Enable
There are three key steps to set up to enable support for this feature:

1. Feature Flag: A new feature flag ORACLEMTCONVERT will be introduced to enable this
feature. This feature will be disabled by default, and needs to be enabled via the CLI. Once
the feature flag ORACLEMTCONVERT is enabled on the Delphix Engine, it will remain
enabled until it is manually disabled.

2. Pre-snapshot Hook on VDB: This hook will open the database in "read only" mode and
issue the DBMS_PDB.DESCRIBE procedure to prepare the virtual database to be
converted to a PDB.

3. Non-CDB to PDB Script: This script will run as a hook present on the target CDB host.
This should call into the Oracle script
$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql to convert the VDB into a PDB.

Workflow Steps
These are the steps to follow to use this functionality. These steps may be performed via the
Delphix API.

1. Link the non-multitenant Oracle 11g or newer source database as a dSource within
Delphix.

2. Provision a non-multitenant Oracle VDB from the dSource onto the VDB target host. This
will be referred to as the Golden VDB.

3. (If using Upgrade Option 1) Upgrade the Golden VDB to the Oracle target version:
manually upgrade the database and point it to the new Oracle home. This step is only
necessary if the source and target Oracle versions are not the same and the data files will
not be upgraded when they are converted below.

4. Create a Golden VDB Pre-snapshot hook on the Golden VDB to open the database in
"read only" mode and issue the DBMS_PDB.DESCRIBE procedure to prepare the virtual
database to be migrated into a PDB and create an XML file called delphix_plugin.xml
in the VDB datafile directory.

5. (Optional) Create a Golden VDB Post-snapshot hook to remove the database from read
only mode. The Golden VDB can also remain "read only".

6. Take a snapshot of the Golden VDB.
7. Create a PDB conversion script named dx-post-plug-hook.sh in the root of the

Delphix toolkit directory of the target CDB host. The name of the PDB being
provisioned/converted will be supplied by Delphix as the first parameter to the script when
it invokes the script. The VDB datafiles will have already been plugged into the target CDB
at the time the script is invoked. The script should do the following:

a. (If using Upgrade Option 2) Upgrade the PDB datafiles prior to the conversion.
b. Call into $ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql and perform

any customizations for the multitenant conversion.
8. Select a snapshot (point-in-time not supported) on the Golden VDB that has the

delphix_plugin.xml file and provision a virtual PDB to a Physical CDB on the CDB
target host by selecting the PDB Provision Parameters as
OracleMultitenantProvisionParameters.
Note: This step can be executed via the API / CLI only, and will not be allowed via the
Delphix UI.

9. To refresh the data in the virtual PDB from production, first refresh the Golden VDB from
the dSource, then refresh the virtual PDB from the new snapshot in the Golden VDB.

Sample Customer Scripts

Golden VDB Pre-Snapshot Hook
#!/bin/sh

sqlplus "/ AS SYSDBA" <<-EOF

 whenever sqlerror exit 2;

 spool
$DELPHIX_MOUNT_PATH/$DELPHIX_DATABASE_UNIQUE_NAME/datafile/presnapshot
.out replace

 shutdown immediate

 startup mount

 alter database open read only;

 exec
dbms_pdb.describe(pdb_descr_file=>'$DELPHIX_MOUNT_PATH/$DELPHIX_DATABA
SE_UNIQUE_NAME/datafile/delphix_plugin.xml');

 exit;

EOF

exit_status=$?

if [$exit_status -eq 0]; then

 exit 0

else

 exit $exit_status

fi

Golden VDB Post-Snapshot Hook (Optional)
#!/bin/sh

sqlplus "/ AS SYSDBA" <<-EOF

 whenever sqlerror exit 2;

 spool
$DELPHIX_MOUNT_PATH/$DELPHIX_DATABASE_UNIQUE_NAME/datafile/postsnapsho
t.out replace

 shutdown immediate

 startup

 exit;

EOF

exit_status=$?

if [$exit_status -eq 0]; then

 exit 0

else

 exit $exit_status

fi

PDB Conversion Script
#!/bin/sh

DELPHIX_PDB_NAME=$1

SCRIPT_DIR="$(cd "$(dirname "$0")" && pwd)"

sqlplus "/ AS SYSDBA" <<-EOF

 whenever sqlerror exit 2;

 spool $SCRIPT_DIR/$DELPHIX_PDB_NAME-pdbconvert.out replace

 alter session set container=$DELPHIX_PDB_NAME;

 @$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql

 exit;

EOF

exit_status=$?

if [$exit_status -eq 0]; then

 exit 0

else

 exit $exit_status

fi

PDB Provision Parameters
(Note: values in bold below indicate values specified by the user)

delphixengine database provision *> ls

Properties

 type: OracleMultitenantProvisionParameters

 container:

 type: OracleDatabaseContainer

 name: <Target-VPDB-Name>

 description: (unset)

 diagnoseNoLoggingFaults: true

 group: <Target-Group>

 performanceMode: DISABLED

 preProvisioningEnabled: false

 sourcingPolicy: (unset)

 credential: (unset)

 masked: (unset)

 maskingJob: (unset)

 source:

 type: OracleVirtualPdbSource

 name: (unset)

 allowAutoVDBRestartOnHostReboot: <true || false>

 config: (unset)

 customEnvVars: (unset)

 fileMappingRules: (unset)

 logCollectionEnabled: false

 mountBase: <VPDB-Mount-Base>

 operations: (unset)

 sourceConfig:

 type: OraclePDBConfig

 cdbConfig: <Target-CDB-SourceConfig>

 databaseName: <Target-VPDB-Name>

 environmentUser: <Target-CDB-Environment-User>

 linkingEnabled: true

 nonSysCredentials: (unset)

 nonSysUser: (unset)

 Repository: <Target-CDB-Repository>

 services: (unset)

 timeflowPointParameters:

 type: TimeflowPointSemantic

 container: <Golden-VDB>

 location: LATEST_SNAPSHOT

 username: (unset)

 virtualCdb: (unset)

Sample CLI input file:

database/provision

set container.name=<Target-VPDB-Name>

set container.group=<Target-Group>

set source.allowAutoVDBRestartOnHostReboot=<true || false>

set source.mountBase=<VPDB-Mount-Base>

set sourceConfig.databaseName=<Target-VPDB-Name>

set sourceConfig.cdbConfig=<Target-CDB-SourceConfig>

set sourceConfig.environmentUser=<Target-CDB-Environment-User>

set sourceConfig.repository=<Target-CDB-Repository>

set timeflowPointParameters.type=TimeflowPointSemantic

set timeflowPointParameters.container=<Golden-VDB>

set timeflowPointParameters.location=LATEST_SNAPSHOT

commit

exit

Note: The timeflowPointParameters type can also be TimeflowPointSnapshot to
point to a specific snapshot. Picking an arbitrary point-in-time between snapshots is not
supported.

Notes and Restrictions
This feature is not available via the Delphix UI.

The provision timeflow point must correspond to a consistent snapshot and not an arbitrary point
between snapshots. The snapshot must also include a delphix_plugin.xml file
corresponding to the files in the snapshot generated using dbms_pdb.describe. A pre-
snapshot hook is a convenient way to accomplish this but it can also be done manually.

The target CDB must be a physical CDB. Virtual CDB targets are not supported.

Delphix does not enforce a time-out when invoking the PDB conversion script.

Delphix enforces a “<=” relationship between the source and target Oracle database versions. This
is to allow the conversion script to optionally perform an upgrade.

RAC
There are a some workflow customizations required for RAC databases:

1. The PDB conversion script must be in the root of the Delphix toolkit directory for all the
target CDB RAC instances.

2. The Golden VDB Pre-Snapshot hook, as provided above, will not work in a clustered (RAC)
environment with more than one active instance because it only shuts down the local
instance. dbms_pdb.describe will not execute while an instance is open read-write. The
workarounds are:

a. Provision the Golden VDB as single-instance, either by provisioning to a non-RAC
target or by provisioning to a RAC target with only one active instance. The sample
hook will work in this case.

b. Write a customized pre-snapshot hook that shuts down all instances, restarts only
one instance in read-only mode, and runs dbms_pdb.describe.

c. Manually perform the actions of the hook: shutdown the Golden VDB, restart one of
the instances in read-only mode, and then run dbms_pdb.describe.

